Predicting Crop Resilience to Climate Change with Machine Learning: Insights for Sustainable Agriculture

Authors

  • Pankaj Kapoor Author

Abstract

Agricultural systems are increasingly vulnerable to the impacts of climate change, requiring innovative approaches to enhance crop resilience. This study presents a machine learning framework that predicts crop performance under varying climate conditions, using historical data on crop yields, weather patterns, and soil characteristics. Our model identifies crop varieties and planting strategies best suited to withstand droughts, extreme temperatures, and other climate-related stressors. The findings support adaptive agricultural practices that maintain productivity, reduce crop failure, and promote food security, paving the way for more resilient and sustainable farming in a changing climate.

References

Balantrapu, S. S. (2021). A Systematic Review Comparative Analysis of Machine Learning Algorithms for Malware Classification. International Scientific Journal for Research, 3(3), 1-29.

Balantrapu, S. S. (2020). AI-Driven Cybersecurity Solutions: Case Studies and Applications. International Journal of Creative Research In Computer Technology and Design, 2(2).

Balantrapu, S. S. (2022). Evaluating AI-Enhanced Cybersecurity Solutions Versus Traditional Methods: A Comparative Study. International Journal of Sustainable Development Through AI, ML and IoT, 1(1), 1-15.

Balantrapu, S. S. (2022). Ethical Considerations in AI-Powered Cybersecurity. International Machine learning journal and Computer Engineering, 5(5).

Balantrapu, S. S. (2021). The Impact of Machine Learning on Incident Response Strategies. International Journal of Management Education for Sustainable Development, 4(4), 1-17.

Balantrapu, S. S. (2019). Adversarial Machine Learning: Security Threats and Mitigations. International Journal of Sustainable Development in Computing Science, 1(3), 1-18.

Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., & Perumal, A. P. (2022). Mental health in the tech industry: Insights from surveys and NLP analysis. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 10(2), 22-33.

Deekshith, A. (2022). Cross-Disciplinary Approaches: The Role of Data Science in Developing AI-Driven Solutions for Business Intelligence. International Machine learning journal and Computer Engineering, 5(5).

Deekshith, A. (2021). Data Engineering for AI: Optimizing Data Quality and Accessibility for Machine Learning Models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.

Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).

Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.

Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).

Published

2022-08-17

Issue

Section

Articles

How to Cite

Kapoor, P. (2022). Predicting Crop Resilience to Climate Change with Machine Learning: Insights for Sustainable Agriculture. International Journal of Medical Informatics and AI , 9(9). https://journalpublication.wrcouncil.org/index.php/IJMIAI/article/view/124