Self-Evolving Neural Architectures: A Paradigm Shift in AI Scalability and Autonomy
Abstract
Current advancements in artificial intelligence often rely on manual tuning and fixed architectures, limiting scalability and adaptability in dynamic scenarios. This research introduces Self-Evolving Neural Architectures (SENA), a system inspired by biological neural evolution, which autonomously optimizes its structure and learning parameters based on task complexity and environmental feedback. Leveraging meta-learning and neuroevolution techniques, SENA dynamically adapts to diverse tasks while minimizing computational overhead. Experimental evaluations on image recognition, reinforcement learning, and real-time control demonstrate up to 35% performance improvements compared to state-of-the-art architectures. SENA opens pathways for creating AI systems capable of autonomous, lifelong learning in complex, unpredictable domains.
References
Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., & Konkimalla, S. (2022). Deep Learning Approaches To Image Classification: Exploring The Future Of Visual Data Analysis. Educational Administration: Theory and Practice, 28(4), 331-345.
Patra, G. K., Rajaram, S. K., Boddapati, V. N., Kuraku, C., & Gollangi, H. K. (2022). Advancing Digital Payment Systems: Combining AI, Big Data, and Biometric Authentication for Enhanced Security. International Journal of Engineering and Computer Science, 11(08), 10-18535.
Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., Konkimalla, S., & Rajaram, S. K. (2020). An Effective Predicting E-Commerce Sales & Management System Based on Machine Learning Methods. Journal of Artificial Intelligence and Big Data, 1(1), 75-85.
Kuraku, C., Rajaram, S. K., Gollangi, H. K., Boddapati, V. N., & Patra, G. K. (2024). Advanced Encryption Techniques in Biometric Payment Systems: A Big Data and AI Perspective. Library Progress International, 44(3), 2447-2458.
Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., & Sarisa, M. (2023). Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-408. DOI: doi. org/10.47363/JAICC/2023 (2), 389(1), 7211-7224.
Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., Konkimalla, S., & Rajaram, S. K. (2020). Navigating the Complexities of Cyber Threats, Sentiment, and Health with AI/ML. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 8(2), 22-40.
Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., Konkimalla, S., & Rajaram, S. K. The power of sentiment: big data analytics meets machine learning for emotional insights. International Journal of Development Research, 10(10), 41565-41573.
Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. Available at SSRN 4977121.
Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., Sarisa, M., & Reddy, M. S. (2024). An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques. Journal of Data Analysis and Information Processing, 12(4), 581-596.
Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Echoes in Pixels: The intersection of Image Processing and Sound detection through the lens of AI and Ml. International Journal of Development Research, 10(08), 39735-39743.
Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow’s Ailments: How AI/ML Is Transforming Disease Forecasting. ESP Journal of Engineering & Technology Advancements, 1(2), 188-200.
Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., & Sarisa, M. (2023). Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-408. DOI: doi. org/10.47363/JAICC/2023 (2), 389(1), 7211-7224.
Rajaram, S. K., Konkimalla, S., Sarisa, M., Gollangi, H. K., Madhavaram, C. R., & Reddy, M. S. (2023). AI/ML-Powered Phishing Detection: Building an Impenetrable Email Security System. ISAR Journal of Science and Technology, 1(2), 10-19.
Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Unveiling the Hidden Patterns: AI-Driven Innovations in Image Processing and Acoustic Signal Detection. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 8(1), 25-45.
Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Exploring AI Algorithms for Cancer Classification and Prediction Using Electronic Health Records. Journal of Artificial Intelligence and Big Data, 1(1), 65-74.
Mahida, A., Mandala, V., Bauskar, S. R., Konkimalla, S., & Reddy, M. S. (2024). Real-Time Fraud Mitigation in Digital Payments: Big Data and AI-Driven Biometric Authentication. Nanotechnology Perceptions, 1176-183.
Sunkara, J. R., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., & Gollangi, H. K. (2023). An Evaluation of Medical Image Analysis Using Image Segmentation and Deep Learning Techniques. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-407. DOI: doi. org/10.47363/JAICC/2023 (2), 388, 2-8.
Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94
Adusumilli, S., Damancharla, H., & Metta, A. (2021). Integrating Machine Learning and Blockchain for Decentralized Identity Management Systems. (2021). International Journal of Machine Learning and Artificial Intelligence, 2(2). https://jmlai.in/index.php/ijmlai/article/view/46
Adusumilli, S., Damancharla, H., & Metta, A. (2022). Blockchain-Based Secure Framework for IoT Data Management. International Journal of Sustainable Development in Computing Science, 4(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/640
Adusumilli, S., Damancharla, H., & Metta, A. (2022). Optimizing Supply Chain Efficiency Through Blockchain and Smart Contracts. (2022). International Numeric Journal of Machine Learning and Robots, 6(6). https://injmr.com/index.php/fewfewf/article/view/183
Adusumilli, S., Damancharla, H., & Metta, A. (2023). Enhancing Data Privacy in Healthcare Systems Using Blockchain Technology. Transactions on Latest Trends in Artificial Intelligence, 4(4). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/637
Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021). Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.
Manoharan, G., Mishra, A. B., Adusumilli, S. B. K., Chavva, M., Damancharla, H., & Lenin, D. S. (2024, May). Supervised Learning for Personalized Marketing Strategies. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-6). IEEE.
Adusumilli, S. B. K. (2024). SCALABLE SOFTWARE ARCHITECTURE FOR DYNAMIC THREAT DETECTION AND MITIGATION IN IOT. Machine Intelligence Research, 18(1), 468-481.
Adusumilli, S. B. K. (2023). TOWARDS ENERGY-EFFICIENT AIML INFERENCE ON EDGE DEVICES SOFTWARE SOLUTIONS AND CHALLENGES. Journal of Engineering Sciences, 14(11).
Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.
Sarkar, R., Malini, T. N., Adusumilli, S. B. K., Jena, M. S., & Patra, J. P. AI-INFUSED BLOCKCHAIN INNOVATIONS IN MANUFACTURING SUPPLY CHAINS FOR ECO-FRIENDLY PRACTICES TOWARDS A SUSTAINABLE FUTURE.
Krutthika Hirebasur Krishnappa. (2024). Traffic pattern analysis for malicious node detection in NoC design” Journal of Communications. 9(12). DOI: 10.12720/jcm.19.12.580-588
Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712
Krutthika H. K. & A.R. Aswatha. (2020). FPGA-based design and architecture of network-on-chip router for efficient data propagation. IIOAB Journal, 11(S2), 7–25.
Krutthika H. K. & A.R. Aswatha (2020). Design of efficient FSM-based 3D network-on-chip architecture. International Journal of Engineering Trends and Technology, 68(10), 67–73. https://doi.org/10.14445/22315381/IJETT-V68I10P212
Krutthika H. K. & Rajashekhara R. (2019). Network-on-chip: A survey on router design and algorithms. International Journal of Recent Technology and Engineering, 7(6), 1687–1691. https://doi.org/10.35940/ijrte.F2131.037619
S. Ajay, et al., & Krutthika H. K. (2018). Source hotspot management in a mesh network-on-chip. 22nd International Symposium on VLSI Design and Test (VDAT-2018). https://doi.org/10.1007/978-981-13-5950-7_51
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.