AI-Driven Drug Discovery: Accelerating Pharmacological Research with Deep Learning
Abstract
Traditional drug discovery is a time-consuming and costly process. This paper explores how AI, particularly deep learning, accelerates drug discovery by predicting molecular interactions and optimizing candidate selection. We implement a generative adversarial network (GAN)-based model to identify potential drug compounds for cancer treatment. Our findings demonstrate that AI-driven drug discovery reduces research timelines and enhances the efficiency of pharmacological breakthroughs, paving the way for faster clinical trials.
References
Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.
Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).
Deekshith, A. (2021). Data engineering for AI: Optimizing data quality and accessibility for machine learning models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.
Deekshith, A. (2022). Cross-Disciplinary Approaches: The Role of Data Science in Developing AI-Driven Solutions for Business Intelligence. International Machine learning journal and Computer Engineering, 5(5).
Deekshith, A. (2023). Scalable Machine Learning: Techniques for Managing Data Volume and Velocity in AI Applications. International Scientific Journal for Research, 5(5).
DEEKSHITH, A. (2018). Seeding the Future: Exploring Innovation and Absorptive Capacity in Healthcare 4.0 and HealthTech. Transactions on Latest Trends in IoT, 1(1), 90-99.
DEEKSHITH, A. (2017). Evaluating the Impact of Wearable Health Devices on Lifestyle Modifications. International Transactions in Artificial Intelligence, 1(1).
DEEKSHITH, A. (2016). Revolutionizing Business Operations with Artificial Intelligence, Machine Learning, and Cybersecurity. International Journal of Sustainable Development in computer Science Engineering, 2(2).
DEEKSHITH, A. (2015). Exploring the Foundations, Applications, and Future Prospects of Artificial Intelligence. International Journal of Sustainable Development in computer Science Engineering, 1(1).
DEEKSHITH, A. (2014). Neural Networks and Fuzzy Systems: A Synergistic Approach. Transactions on Latest Trends in Health Sector, 6(6).
Deekshith, A. (2023). Transfer Learning for Multilingual Speech Recognition in Low-Resource Languages. International Transactions in Machine Learning, 5(5).
Deekshith, A. (2021). AI-Driven Sentiment Analysis for Enhancing Customer Experience in E-Commerce. International Journal of Machine Learning for Sustainable Development, 3(2).
DEEKSHITH, A. (2019). From Clinics to Care: A Technological Odyssey in Healthcare and Medical Manufacturing. Transactions on Latest Trends in IoT, 2(2).
DEEKSHITH, A. (2018). Integrating IoT into Smart Cities: Advancing Urban Health Monitoring and Management. International Transactions in Artificial Intelligence, 2(2).
DEEKSHITH, A. (2016). Revolutionizing Business Operations with Artificial Intelligence, Machine Learning, and Cybersecurity. International Journal of Sustainable Development in computer Science Engineering, 2(2).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Optimizing SAP Data Processing with Machine Learning Algorithms in Cloud Environments. International Transactions in Artificial Intelligence, 4(4).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Artificial Intelligence in Business Analytics: Cloud-Based Strategies for Data Processing and Integration. International Journal of Sustainable Development in Computing Science, 2(4).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Scalable Data Processing Pipelines: The Role of AI and Cloud Computing. International Scientific Journal for Research, 2(2).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Leveraging Cloud Computing for Efficient Data Processing in SAP Enterprise Solutions. International Journal of Machine Learning for Sustainable Development, 3(4).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Machine Learning in SAP Workflows: A Study of Predictive Analytics and Automation. Transactions on Latest Trends in Artificial Intelligence, 2(2).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Machine Learning Models for Optimizing SAP-Based Data Processing in Cloud Environments. International Journal of Sustainable Development in Computing Science, 3(3).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2022). Advanced Business Analytics Using Machine Learning and Cloud-Based Data Integration. International Scientific Journal for Research, 4(4).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). AI-Driven Business Analytics Framework for Data Integration Across Hybrid Cloud Systems. Transactions on Latest Trends in Artificial Intelligence, 4(4).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). Integrating AI and Cloud Computing for Scalable Business Analytics in Enterprise Systems. International Journal of Sustainable Development in Computing Science, 5(3).
Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). Enhancing Data Integration Using AI and ML Techniques for Real-Time Analytics. International Journal of Machine Learning for Sustainable Development, 5(3).
Raghunath (2024), "Security Issues Analysis Based on Big Data in Cloud Computing," World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 2549-2557, 2024.
Raghunath (2024), "Analysis on Addressing the Threats to Cloud Computing on the Basis of Security Safeguards for SAP Cloud Services," World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 2539-2548, 2024.
Vattikuti, M. C. (2024). Transfer Learning for Early Diagnosis of Rare Diseases Using Medical Imaging. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 16(16).
Vattikuti, M. C. (2024). Natural Language Processing for Automated Legal Document Analysis and Contract Review. International Journal of Sustainable Devlopment in field of IT, 16(16).
Vattikuti, M. C. (2023). Real-Time Anomaly Detection in Industrial IoT Systems Using Hybrid AI Models. International Scientific Journal for Research, 5(5).
Vattikuti, M. C. (2023). Ethical AI Framework for Bias Mitigation in Machine Learning Algorithms. International Scientific Journal for Research, 5(5).
Vattikuti, M. C. (2022). Federated Learning for Privacy-Preserving AI in Healthcare Applications. International Transactions in Artificial Intelligence, 6(6).
Vattikuti, M. C. (2022). Generative Adversarial Networks for Data Augmentation in Medical Imaging. International Journal of Sustainable Development in Computing Science, 4(3).
Vattikuti, M. C. (2024). Improving Drug Discovery and Development Using AI: Opportunities and Challenges. Research-gate journal, 10(10).
Vattikuti, M. C. (2022). Comparative Analysis of Deep Learning Models for Tumor Detection in Medical Imaging. Research-gate journal, 8(8).
Vattikuti, M. C. (2020). A Comprehensive Review of AI-Based Diagnostic Tools for Early Disease Detection in Healthcare. Research-gate journal, 6(6).
Vattikuti, M. C. (2018). Leveraging Edge Computing for Real-Time Analytics in Smart City Healthcare Systems. International Transactions in Artificial Intelligence, 2(2).
Vattikuti, M. C. (2018). Leveraging AI for Sustainable Growth in AgTech: Business Models in the Digital Age. Transactions on Latest Trends in IoT, 1(1), 100-105.
Vattikuti, M. C. (2017). Ethical Framework for Integrating IoT in Urban Healthcare Systems. International Transactions in Artificial Intelligence, 1(1).
Vattikuti, M. C. (2016). The Rise of Big Data in Information Technology: Transforming the Digital Landscape. International Journal of Sustainable Development in computer Science Engineering, 2(2).