AI-based Digital Therapeutics for Mental Health: A Review of Current Trends and Future Directions
Abstract
This paper provides an overview of current trends and future directions in AI-based digital therapeutics for mental health management. We discuss the application of machine learning algorithms in developing personalized interventions, such as chatbots, virtual reality environments, and mobile applications, to support individuals with mental health conditions. Furthermore, we examine the evidence base supporting the efficacy and usability of these interventions and highlight opportunities for integrating AI-driven digital therapeutics into mainstream mental healthcare delivery.
References
Balantrapu, S. S. (2022). Evaluating AI-Enhanced Cybersecurity Solutions Versus Traditional Methods: A Comparative Study. International Journal of Sustainable Development Through AI, ML and IoT, 1(1), 1-15.
Balantrapu, S. S. (2022). Ethical Considerations in AI-Powered Cybersecurity. International Machine learning journal and Computer Engineering, 5(5).
Balantrapu, S. S. (2021). The Impact of Machine Learning on Incident Response Strategies. International Journal of Management Education for Sustainable Development, 4(4), 1-17.
Balantrapu, S. S. (2019). Adversarial Machine Learning: Security Threats and Mitigations. International Journal of Sustainable Development in Computing Science, 1(3), 1-18.
Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).
Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.
Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).
Boppiniti, S. T. (2021). Real-Time Data Analytics with AI: Leveraging Stream Processing for Dynamic Decision Support. International Journal of Management Education for Sustainable Development, 4(4).
Boppiniti, S. T. (2019). Machine Learning for Predictive Analytics: Enhancing Data-Driven Decision-Making Across Industries. International Journal of Sustainable Development in Computing Science, 1(3).
Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., & Perumal, A. P. (2022). Mental health in the tech industry: Insights from surveys and NLP analysis. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 10(2), 22-33.
Deekshith, A. (2021). Data Engineering for AI: Optimizing Data Quality and Accessibility for Machine Learning Models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.
Adusumilli, S., Damancharla, H., & Metta, A. (2020). Artificial Intelligence-Driven Predictive Analytics for Educational Behavior Assessment. Transactions on Latest Trends in Artificial Intelligence, 1(1). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/638
Adusumilli, S., Damancharla, H., & Metta, A. (2020). Machine Learning Algorithms for Fraud Detection in Financial Transactions. International Journal of Sustainable Development in Computing Science, 2(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/639
Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94
Adusumilli, S., Damancharla, H., & Metta, A. (2021). Integrating Machine Learning and Blockchain for Decentralized Identity Management Systems. (2021). International Journal of Machine Learning and Artificial Intelligence, 2(2). https://jmlai.in/index.php/ijmlai/article/view/46
Adusumilli, S., Damancharla, H., & Metta, A. (2022). Blockchain-Based Secure Framework for IoT Data Management. International Journal of Sustainable Development in Computing Science, 4(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/640
Adusumilli, S., Damancharla, H., & Metta, A. (2022). Optimizing Supply Chain Efficiency Through Blockchain and Smart Contracts. (2022). International Numeric Journal of Machine Learning and Robots, 6(6). https://injmr.com/index.php/fewfewf/article/view/183
Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2021). AI-Powered Cybersecurity Solutions for Threat Detection and Prevention. International Journal of Creative Research In Computer Technology and Design, 3(3).
Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2020). Leveraging AI for Real-Time Sentiment Analysis in Social Media Networks. International Numeric Journal of Machine Learning and Robots, 4(4).
Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021). Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.
Sarkar, R., Malini, T. N., Adusumilli, S. B. K., Jena, M. S., & Patra, J. P. AI-INFUSED BLOCKCHAIN INNOVATIONS IN MANUFACTURING SUPPLY CHAINS FOR ECO-FRIENDLY PRACTICES TOWARDS A SUSTAINABLE FUTURE.
Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.
Whig, P., & Adusumilli, S. B. K. (2022). Machine Learning Applications in Healthcare Supply Chains: Improving Efficiency, Resilience, and Patient Outcomes. Transactions on Recent Developments in Health Sectors, 5(5).
Chintala, S. Analytical Exploration of Transforming Data Engineering through Generative AI‖. International Journal of Engineering Fields, ISSN, 3078-4425.
Narani, S. R., Ayyalasomayajula, M. M. T., & Chintala, S. (2018). Strategies For Migrating Large, Mission-Critical Database Workloads To The Cloud. Webology (ISSN: 1735-188X), 15(1).
Ayyalasomayajula, M. M. T., Chintala, S., & Narani, S. R. INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING.
Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow’s Ailments: How AI/ML Is Transforming Disease Forecasting. ESP Journal of Engineering & Technology Advancements, 1(2), 188-200.
Madhavaram, C. R., Galla, E. P., Reddy, M. S., Sarisa, M., & Nagesh, V. (2021). Predicting Diabetes Mellitus in Healthcare: A Comparative Analysis of Machine Learning Algorithms on Big Dataset. Journal homepage: https://gjrpublication. com/gjrecs, 1(01).
Bauskar, S. R., Reddy, M. S., Sarisa, M., & KONKIMALLA, S. The Future of Cloud Computing_ Al-Driven Deep Learning and Neural Network Innovations. BUDHA PUBLISHER.
Konkimalla, S., SARISA, M., REDDY, M. S., & BAUSKAR, S. DATA ENGINEERING IN THE AGE OF AI GENERATIVE MODELS AND DEEP LEARNING UNLEASHED. BUDHA PUBLISHER.
Reddy, M., Konkimalla, S., Rajaram, S. K., Bauskar, S. R., Sarisa, M., & Sunkara, J. R. (2022). Using AI And Machine Learning To Secure Cloud Networks: A Modern Approach To Cybersecurity. Available at SSRN 5045776.
Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712
Krutthika H. K. & A.R. Aswatha. (2020). FPGA-based design and architecture of network-on-chip router for efficient data propagation. IIOAB Journal, 11(S2), 7–25.
Krutthika H. K. & A.R. Aswatha (2020). Design of efficient FSM-based 3D network-on-chip architecture. International Journal of Engineering Trends and Technology, 68(10), 67–73. https://doi.org/10.14445/22315381/IJETT-V68I10P212
Krutthika H. K. & Rajashekhara R. (2019). Network-on-chip: A survey on router design and algorithms. International Journal of Recent Technology and Engineering, 7(6), 1687–1691. https://doi.org/10.35940/ijrte.F2131.037619
S. Ajay, et al., & Krutthika H. K. (2018). Source hotspot management in a mesh network-on-chip. 22nd International Symposium on VLSI Design and Test (VDAT-2018). https://doi.org/10.1007/978-981-13-5950-7_51