Enhancing Disaster Response and Recovery Through AI: Real-Time Decision Support for Sustainable Humanitarian Efforts

Authors

  • Dr. Oli Kotagiri Author

Abstract

Disasters, both natural and man-made, demand rapid and effective response to minimize human and environmental impacts. This paper investigates the use of AI-driven decision support systems for real-time disaster response, leveraging satellite data, social media analytics, and predictive models to optimize resource allocation and rescue operations. By combining real-time information with predictive algorithms, our approach enhances situational awareness, enabling quicker and more coordinated responses. Case studies from recent disaster events reveal that AI can significantly reduce response times and improve the sustainability of recovery efforts by allocating resources effectively.

References

Boppiniti, S. T. (2020). Big Data Meets Machine Learning: Strategies for Efficient Data Processing and Analysis in Large Datasets. International Journal of Creative Research In Computer Technology and Design, 2(2).

Boppiniti, S. T. (2021). Real-Time Data Analytics with AI: Leveraging Stream Processing for Dynamic Decision Support. International Journal of Management Education for Sustainable Development, 4(4).

Boppiniti, S. T. (2019). Machine Learning for Predictive Analytics: Enhancing Data-Driven Decision-Making Across Industries. International Journal of Sustainable Development in Computing Science, 1(3).

Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).

Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.

Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., & Perumal, A. P. (2022). Mental health in the tech industry: Insights from surveys and NLP analysis. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 10(2), 22-33.

Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).

Deekshith, A. (2022). Cross-Disciplinary Approaches: The Role of Data Science in Developing AI-Driven Solutions for Business Intelligence. International Machine learning journal and Computer Engineering, 5(5).

Balantrapu, S. S. (2022). Evaluating AI-Enhanced Cybersecurity Solutions Versus Traditional Methods: A Comparative Study. International Journal of Sustainable Development Through AI, ML and IoT, 1(1), 1-15.

Balantrapu, S. S. (2022). Ethical Considerations in AI-Powered Cybersecurity. International Machine learning journal and Computer Engineering, 5(5).

Balantrapu, S. S. (2021). The Impact of Machine Learning on Incident Response Strategies. International Journal of Management Education for Sustainable Development, 4(4), 1-17.

Balantrapu, S. S. (2019). Adversarial Machine Learning: Security Threats and Mitigations. International Journal of Sustainable Development in Computing Science, 1(3), 1-18.

Deekshith, A. (2021). Data Engineering for AI: Optimizing Data Quality and Accessibility for Machine Learning Models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.

Published

2022-08-17

Issue

Section

Articles

How to Cite

Kotagiri , D. O. (2022). Enhancing Disaster Response and Recovery Through AI: Real-Time Decision Support for Sustainable Humanitarian Efforts. International Journal of AI-Assisted Medicine , 9(9). https://journalpublication.wrcouncil.org/index.php/IJAAM/article/view/114